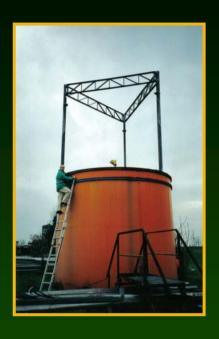
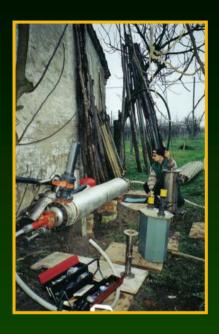
Digestione Anaerobica: valutazione costi/benefici, analisi tecnica di alcuni casi studio e prospettive di sviluppo

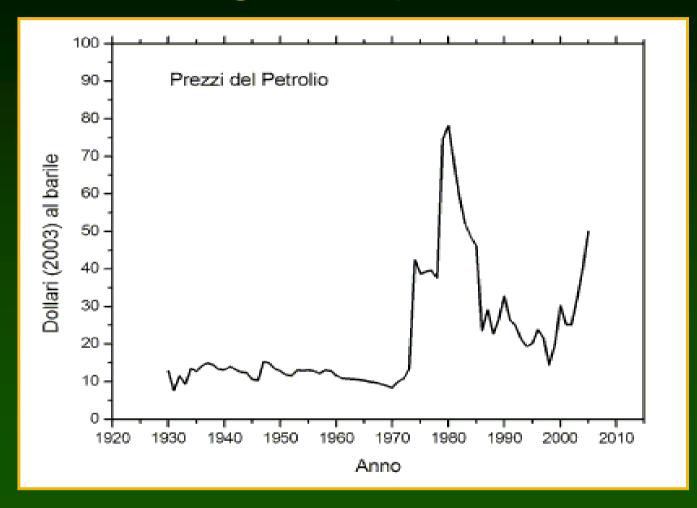
RES

Via Filippo Re, 18 48100 Fornace Zarattini (RA)


Dott. Antonio Primante


Presentazione della
Cooperativa RES e del suo
approccio alla valorizzazione
energetica delle biomasse

Presentazione Parametri D.A. Costi/benefici Casi studio Prospettive


Primi passi (Gennaio 2001)

Crisi energetica primi anni '80

Crisi energetica primi anni '80

- Regione Emilia Romagna e Agip realizzano diversi impianti per la produzione di biogas da allevamenti suinicoli e avicoli.
- Problemi di corrosione dei materiali impiegati e difficoltà nello smaltimento del digestato limita lo sviluppo di questa tecnologia.

Un nuovo approccio (2003)

Impianto pilota (2003, INIZIO COSTRUZIONE)

Un anno e mezzo di co-lavori

Cooperativa

- L'impresa si è costituita nel 2004
- 2005 riconoscimento a livello nazionale

(2° posto nel settore dei servizi come Giovane Impresa Innovativa - 3° Giornata dell'Economia, Roma, 09/05/2005)

COLLABORATOR

Gruppo

Dott. Antonio Primante Laureato in Scienze Ambientali

Dott. Paolo Gabici Laureato in Fisica

SOC

Dott. Chato Della Casa Laureato in Scienze Ambientali

Ing. Marcella Volta Laureata in Ingegneria *Ambientale*

Ing. Claudio Lolli Laureato in Ingegneria Ambientale

Ing. Davide Bersani Laureato in Ingegneria Meccanica

Ing. Stefano Silvi Laureato in Ingegneria Edile-Architettura

Mission

Fornire servizi alle aziende interessate ad operare secondo il concetto di <u>sviluppo</u> <u>sostenibile</u> con competenza, professionalità e responsabilità attraverso <u>continui aggiornamenti</u> ed attenzione alle esigenze del cliente

Settori di intervento

- Digestione Anaerobica
- Acustica
- Ambiente e Sicurezza
- Formazione

Settore: digestione anaerobica

- Attività di ricerca e sviluppo
- Test in laboratorio con Fermentatori RES
- Test in campo con Impianto Pilota RES
- Realizzazione e vendita di fermentatori di laboratorio ed impianti pilota
- Progettazione, realizzazione e gestione di impianti a scala reale
- Assistenza tecnica su impianti esistenti

Strumentazione e attrezzature

Fermentatori di Laboratorio

Impianto Pilota

Laboratorio

Prodotti di reazione

La biomassa, durante il processo anaerobico, viene convertita in due fasi:

fase gassosa (biogas)

fase solida (digestato)

Parametri di processo

- T = 10 ÷ 60 °C (psicrofilia, mesofilia, termofilia)
- Digestione ad umido, a semisecco, a secco
- pH, redox

- Tempo di residenza della biomassa all'interno del digestore (tempo di ritenzione idraulica = HRT)
- Contenuto di CH₄ nel biogas
- Contenuto di H₂S nel biogas
- Contenuto di NH₃ nel reattore
- Rapporto Acidi Grassi Volatili/Alcalinità (VFA/Alcalinità)

Parametri di input ed output

- Portata di materiale in ingresso (in $t/d = Q_{in}$)
- Quantità di sostanza secca nelle matrici in ingresso e nel digestato (% in peso dei solidi totali sul t.q. = S.T.)
- Quantità di sostanza organica nelle matrici in ingresso e nel digestato (% in peso dei solidi volatili sui S.T. = S.V.)
- Carico organico in ingresso all'impianto per unità di tempo e di volume del reattore anaerobico (in kg S.V./(d*m³ reattore) = OLR)
- Contenuto degli elementi principali (C, N, P, K) e microelementi
- Produzione di biogas (in Nm 3 /d = P_{biogas})
- Resa in biogas della biomassa (in Nm³/ $t_{s.v.} = Y_{s.v.}$ o in Nm³/ $t_{t.q.} = Y_{t.q.}$)

Parametri impiantistici

- Volume totale del reattore (in $m^3 = V_{tot}$)
- Volume utile del reattore (in $m^3 = V_{util}$)
- Potenza installata elettrica e termica (in kW = W_e e W_{th})
- Produttività degli impianti (in Nm^3 biogas/(d^*m^3 di reattore) = \mathbb{R})
- Produzione di energia elettrica e termica (in kWh_e/y = P_e e P_{th})
- Numero stadi (n_{st})
- Tipologia impiantistica dei digestori (semplificato, CSTR, PFR, UASB, batch ecc.)
- Miscelazione (assente, meccanica, biogas ecc.), riscaldamento, separazione solido/liquido, stoccaggio del biogás (cupola polimerica, gasometro in metallo), ricircolo ecc.

Rese per alcune biomasse

Materiale	Biogas prodotto I/kg S.T.	Metano %
Letame bovino	180 – 220	55 – 57
Letame suino	170 – 450	60 – 65
Letame avicolo	300 – 450	60 – 70
Erba	450 – 530	55 – 57
Scarti macellazione	590 – 610	58 – 60

Analisi dei vantaggi e svantaggi nell'utilizzo della Digestione Anaerobica per la valorizzazione delle matrici organiche

Valorizzazione del biogas

- Generazione di energia termica
- Generazione di energia elettrica
- <u>Cogenerazione</u> (CHP) di *energia elettrica* (per autoconsumo/vendita al netto degli autoconsumi di impianto) ed *energia termica* (per consumi dell'impianto, essiccatori, riscaldamento stalle ed acqua, teleriscaldamento ecc.)
- Utilizzo nel settore degli autotrasporti come biocombustibile
- Immissione nella rete di distribuzione del gas naturale

Prospettive

Vantaggi della co-digestione

Tipologia di matrice	Resa in biogas I/kg S.V. elim.
Suinicola	260 – 700
Avicola	460 – 700
Bovina	290 – 340
Ovo-caprina	120 – 340

Molti reflui contengono sostanza organica di valore in termini di produzione unitaria di biogas

Vantaggi della co-digestione

Tuttavia, limitazioni nel contenuto di S.T. e/o di S.V. o una composizione sbilanciata possono ostacolare valorizzazione di matrici singole. La co-digestione invece può rendere economicamente sostenibile l'impianto.

Tipologia di matrice	S.T. (% t.q.)	S.V. (% S.T.)	S.V. (% t.q.)
Suini	3 - 8	65 – 75	2 – 6
Avicoli	10 - 30	70 – 80	7 – 24
Bovini	6 - 16	75 – 85	5 – 14
Ovini e caprini	15 - 35	70 – 80	21 – 28

D.A. come investimento

Gli impianti RES sono customizzati.

Sono state redatte offerte per impianti da 150, 180 e 250 kW.

I tempi di ritorno stimati rientravano nei seguenti range:

- 6 ÷ 8 anni considerando 0.22 €/kWh di incentivo
- 4 ÷ 6 anni considerando 0.28 €/kWh di incentivo.

Vantaggi socio/economici

- Possibilità di beneficiare dei Certificati Verdi o del Conto Energia per le biomasse
- Disponibilità di energia elettrica e termica per il fabbisogno aziendale (bilancio energetico nettamente positivo)
- Risparmio nello smaltimento dei reflui
- Guadagno dalla eventuale vendita dell'ammendante stabilizzato
- Adeguamento alle normative ambientali ed igienico/sanitarie con un <u>investimento</u> (IPPC)
- Maggiore accettabilità sociale, migliore integrazione del processo produttivo nel territorio

Vantaggi amb. ed igienico-sanitari

- Elevata riduzione dell'inquinamento olfattivo, dovuta alla degradazione della sostanza putrescibile
- Distruzione delle uova e delle larve di insetti, degli organismi patogeni e dei semi delle piante infestanti dovuta alla permanenza in ambiente privo di ossigeno
- Riduzione del rilascio di gas serra (CH₄, N₂O ecc.)
- Produzione di energia rinnovabile
- Risparmio di energia fossile per la produzione di fertilizzanti di sintesi grazie all'utilizzo del digestato come ammendante
- Lotta alla desertificazione dei suoli riportando la sostanza organica umificata ai terreni

Svantaggi della D.A.

- Elevati costi di investimento
- Complessità impiantistica e/o di controllo del processo
- Mancanza di chiarezza normativa in merito agli iter autorizzativi

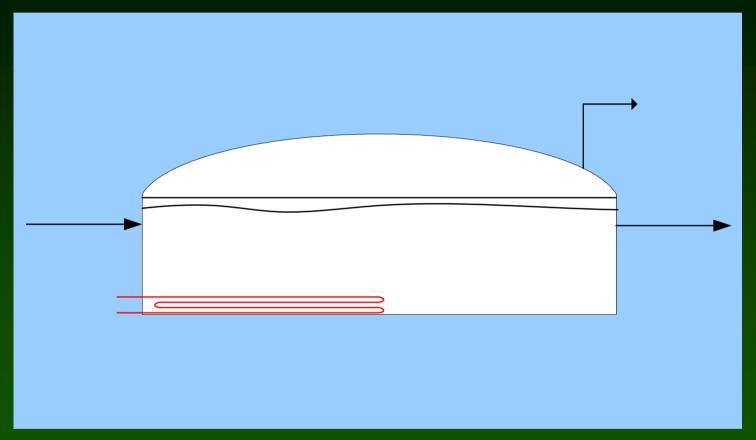
Casi studio: analisi problematiche e ipotesi di soluzione

Caso studio 1 – dati tecnici

Anno di realizzazione	1991
Alimentazione	Liquame suinicoli flottati (4'000÷5'000 suini ingrasso)
Q _{in}	12÷15 t/d
n _{st}	1
Tipologia impianto	1 PFR semplif. (riscaldamento sul fondo, cupola gasometrica, no mix)
V _{tot}	450 m ³
P _{biogas}	630 Nm³/d → R = 1.4 Nm³ biogas/(d*m³ reat.)
Conversione biogas	Prima CHP, ora caldaia
W _{th}	140 kW _{th}
Autoconsumo	100% (di cui 30% per riscaldamento reattore e 70% per le stalle)
Т	35°C
OLR	2 kg S.V./(m³ reat.*d)
HRT	30÷38 d
C/N	10
Investimento	250'000 €
Gestione impianto	Interna

Presentazione / Parametri D.A. / Costi/benefici / Casi studio / Prospettive

Caso studio 1 – foto



Presentazione / Parametri D.A. / Costi/benefici / Casi studio / Prospettive

Caso studio 1 – tipo impianto

Reattore plug-flow semplificato

Caso studio 1 – commenti

Dall'analisi degli impianti esistenti in Sardegna sono emerse alcune problematiche correlate con quelle appena evidenziate:

- mancanza di un monitoraggio del biogas (produzione e contenuto in CH₄, H₂S, NH₃): non permette di verificare l'idoneità del biogas alla cogenerazione e la resa del cogeneratore (rendimento elettrico in funzione della % CH₄ e dell'usura)
- mancanza di deumidificazione e di purificazione del biogas: problemi al cogeneratore
- mancanza di cogenerazione: l'impianto diventa un costo e non un investimento

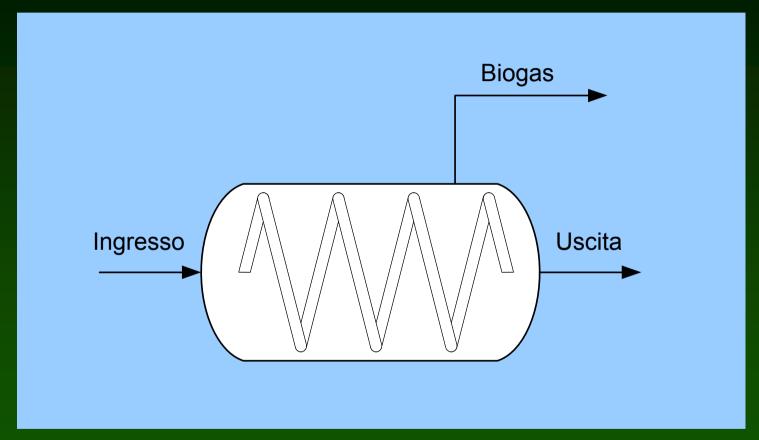
Caso studio 2 – dati tecnici

Anno di realizzazione	2007
Alimentazione	Sorgo, mais, liquame bovino e scarti agroindustriali
Q _{in}	60 t/d (64% biom. ded., 27% biom. resid., 9% liqu.)
n _{st}	3
Tipologia impianto	1 PFR e 2 CSTR
V _{tot}	PFR=1'000 m³, CSTR=2'400 m³ → 5'800 m³
P _{biogas}	4'600 Nm³/d → R = 0.8 Nm³ biogas/(d*m³ reat.)
Conversione biogas	CHP
W _e e W _{th}	850 kW _e 1'050 kW _{th}
Autoconsumo	7.4% P _e (impianto) 20% P _{th} (impianto)
Т	42°C (PFR) 35÷38°C (CSTR)
OLR	3 kg S.V./(m³ reat.*d)
HRT	100 d
H ₂ S	35 ppm
Investimento	3'000'000 €
Gestione impianto	Ditta specializzata estera

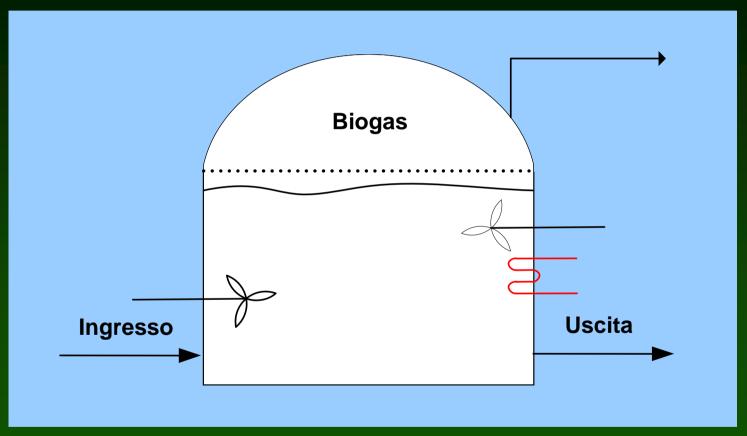
Prospettive

Presentazione / Parametri D.A. / Costi/benefici / Casi studio / Prospettive

Caso studio 2 – foto



Presentazione / Parametri D.A. / Costi/benefici / Casi studio / Prospettive


Caso studio 2 – tipo impianto

Reattore plug-flow (PFR)

Caso studio 2 – tipo impianto

Reattore completamente miscelato (CSTR)

Caso studio 2 – biomassa dedicata

Gli impianti alimentati in prevalenza o del tutto a biomasse dedicate sono esposti ad alcuni rischi ed hanno un impatto significativo sull'ambiente:

- impatto ambientale della coltivazione e dei trasporti
- incidenza economica delle colture nell'investimento
- dipendenza dal mercato e dalle sue fluttuazioni
- concorrenza alle colture FOOD.

Utilizzo di biomasse vegetali in co-digestione

BIOMASSE DEDICATE

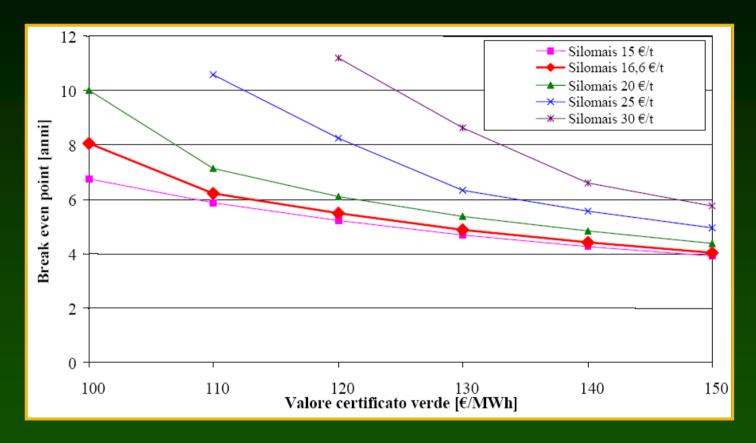
Coltivazione/raccolta:

- Produzione di semi
- Lavorazione terreno
- Semina

Presentazione

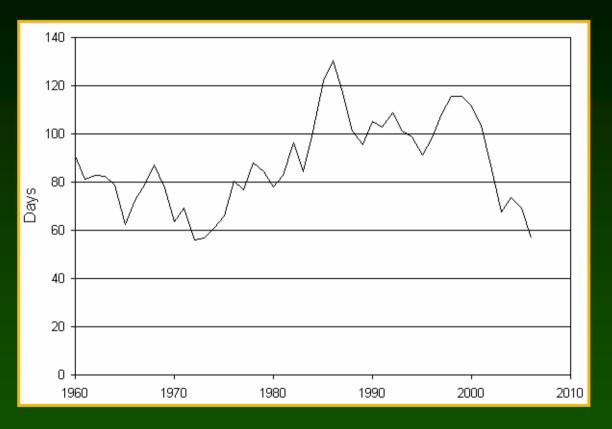
- Fertilizzazione
- Trattamenti chimici
- Raccolta
- Trasporto in azienda
- Stoccaggio

BIOMASSE RESIDUALI


Approvvigionamento/raccolta:

- Raccolta
- Trasporto in azienda
- Stoccaggio

Presentazione / Parametri D.A. / Costi/benefici / Casi studio / Prospettive


Caso studio 2 – biomassa dedicata

Variazione degli anni necessari al break-even point in un impianto di circa 1 MW_e alimentato a silomais per più del 50%

Caso studio 2 – biomassa dedicata

Andamento delle scorte mondiali di cereali, in giorni di consumo (fonte: EPI). Quando le scorte scendono sotto i 60 giorni, i prezzi dei cereali cominciano ad aumentare

Caso studio 2 – commenti

Dall'analisi degli impianti esistenti in Sardegna sono emerse alcune problematiche correlate con quelle appena evidenziate:

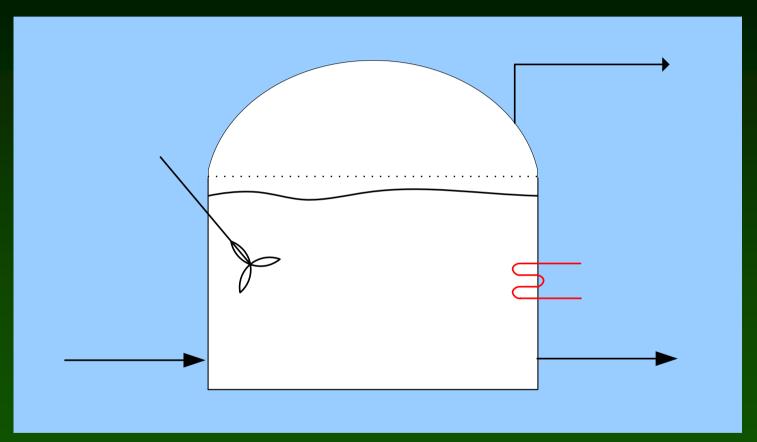
- sovradimensionamento del digestore anaerobico
- sovradimensionamento del cogeneratore.

Caso studio 3 – dati tecnici

Anno di realizzazione	1995
Alimentazione	Liquame bovino e paglia di lettiera (700 bovini da latte)
Q _{in}	50 t/d
n _{st}	1
Tipologia impianto	1 CSTR
V _{tot} e V _{util}	1'100 m³ 1'000 m³
Conversione biogas	CHP
P _{biogas}	1'050 Nm³/d → R = 1 Nm³ biogas/(d*m³ reat.)
W _e e W _{th}	100 kW _e 97 kW _{th}
Autoconsumo	80% P _e (impianto ed allevamento) 100% P _{th} (impianto e non suff.)
Т	40°C estate 30°C inverno
OLR	5 kg S.V./(m³ reat.*d)
HRT	20 d
C/N	17
Investimento	400'000€
Gestione impianto	Interna

Presentazione / Parametri D.A. / Costi/benefici / Casi studio / Prospettive

Caso studio 3 – foto



Caso studio 3 – tipo impianto

Reattore completamente miscelato (CSTR)

Presentazione / Parametri D.A. / Costi/benefici / Casi studio / Prospettive

Caso studio 3 – analisi Aspetti positivi:

- Digestione anaerobica per il trattamento di reflui/scarti organici impattanti
- biomasse residuali prima che dedicate
- · impianti efficienti, monitorati ed aggiornati
- impianto come investimento per un'integrazione del reddito (cogenerazione) delle attività agro-zootecniche e non come costo di trattamento.

Aspetti da ottimizzare:

- Elevati costi energetici di pretrattamento della paglia
- tempo di residenza basso
- mancanza separazione solido/liquido del digestato

Prospettive di sviluppo della valorizzazione di risorse organiche mediante digestione anaerobica

Prospettive a breve termine

- Investire sull'esistente per renderlo più efficiente ed economicamente redditizio
- Nuovi impianti per il trattamento delle matrici già conosciute (liquami suini e bovini) applicando il concetto della codigestione e della valorizzazione del digestato.

Presentazione

Ricerca applicata

Obiettivi e ricadute

- Testare nuove matrici/miscele ampliando i campi di applicazione del processo di digestione anaerobica
- ottimizzazione della resa
- soluzione di problemi impiantistici e di processo
- migliorare i pretrattamenti delle miscele in ingresso
- migliorare la gestione e valorizzazione del digestato
- diminuire la taglia minima degli impianti (< 60 kW_e).

Prospettive

Matrici/miscele

- Scelta di biomasse dedicate adatte al clima e coltivate il più possibile all'interno di una logica di rotazione colturale e/o di set-aside (P.R.E.A.)
- Scelta di biomasse di scarto povere e diffuse come paglia e stocchi per codigestione con reflui zootecnici ad alto tenore di umidità in sostituzione parziale delle biomasse dedicate (AGROBIOGAS)
- FORSU, anche in co-digestione con fanghi di depurazione dove la raccolta dei rifiuti e la depurazione avvengono in aree limitrofe (FOR-BIOGAS)
- Deiezioni avicole in co-digestione con biomasse dedicate (R.E.S.P.A.C.). A riguardo è in corso un approfondimento
- Scarti di macellazione ed altri sottoprodotti di origine animale
- Scarti e reflui dell'agroindustria, della ristorazione, dell'industria lattierocasearia, dei birrifici.

Presentazione

Integrazione con altre filiere

- Compostaggio
- Bioraffinerie

Biocarburanti di II generazione

Presentazione

Vantaggi derivanti dall'integrazione di digestione anaerobica e compostaggio

Migliore valorizzazione della matrice organica trattata:

- bilancio energetico è positivo: si produce energia rinnovabile, in parte sfruttata per coprire i consumi impiantistici
- riduzione delle emissioni di gas serra in atmosfera
- flessibilità rispetto al contenuto di umidità della matrice organica trattata è maggiore.

La fase più incisiva di stabilizzazione della sostanza organica avviene nel digestore anaerobico, pertanto:

- riduzione delle emissioni di odori molesti e COV
- riduzione bioaerosol → maggior sicurezza dal punto di vista sanitario.

Bioraffinerie

Residuo	Bio-prodotto
Polpa di barbabietola	Vanillina
Scarti di mela, malto spento	Acido gamma-linoleico
Residui di kiwi	Laccasi

Vantaggi offerti dalle nuove tecnologie

- Garanzia di redditività dell'impianto grazie alla supervisione di personale specializzato anche da remoto (telecontrollo e telemonitoraggio)
- Riduzione delle dimensioni del digestore rispetto alla digestione anaerobica ad umido con relativa riduzione dei costi di realizzazione e dei tempi di payback
- Applicabilità a matrici organiche ad alto contenuto di sostanza secca (reflui avicoli, letame bovino, FORSU ecc.)
- Possibilità di realizzare impianti di taglia ridotta per servire singole attività (< 60 kW_e di potenza installata)
- Riequilibrio del rapporto fra i nutrienti (C, N, P, K) per effetto del processo anaerobico e dell'opportuna miscela di matrici differenti.

RES Società Cooperativa Reliable Environmental Solutions

Si ringrazia per l'attenzione e si ricorda il nostro indirizzo e-mail per richiedere ulteriori informazioni

biogas@resitalia.org

