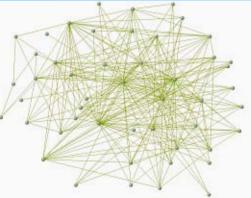
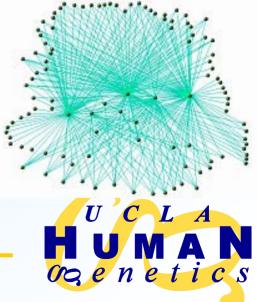


Weighted Gene Co-Expression Network Analysis

Combined Analysis of SNP and Microarray Data



Steve Horvath Jeanette Papp UCLA



The Challenge

- Using traditional genetic methods, the major simple mendelian traits have been identified
- Finding genes for complex traits and understanding the underlying biology has proven much more difficult

The Solution

Integration of different data types

- Genetic Data SNPs
- Expression Data
- Protein Data

The Solution

Integration of different data types

Genetic Data - SNPs

Expression Data

Protein Data

The Tool

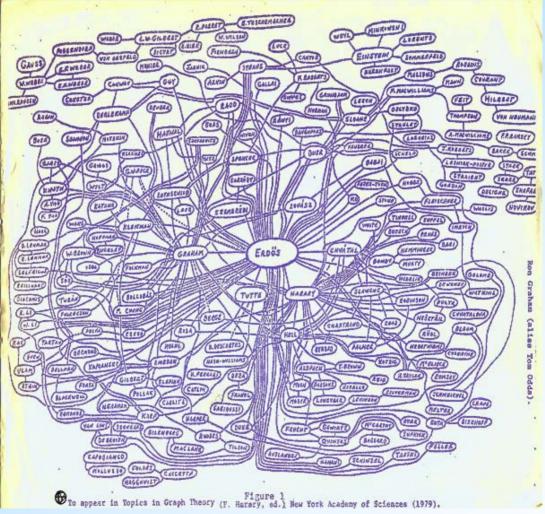
Network Analysis Combined Analysis of SNP and Microarray Data

Network Analysis

 Brief review of Network Analysis concepts and methods

 Some results from projects at UCLA

Connectivity can be an important variable for identifying key nodes



Which of the following mathematicians had the biggest influence on others?

Networks

Network methods are used to model systems such as the internet, social interactions, and biological pathways.

Definitions:

- Node = object (eg. gene)
- Link = line connecting 2 objects
- $k = Degree(Node_i) = #$ of links to Node i
- Pr(k) = probability Node i has k links
- Gene Module = group of co-expressed genes

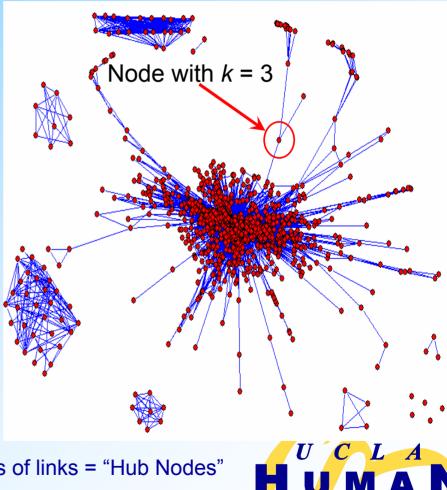
Two Network Types: 1) Random Network:

 $Pr(k) \sim Poisson(\lambda) = \frac{e^{-\lambda} \lambda^k}{k!}$ i.e. Each node has approximately the same number of links

2) Scale-Free Network:

 $Pr(k) \sim Power Law(\gamma) = k^{-\gamma}$

i.e. Some nodes are highly connected with thousands or even millions of links = "Hub Nodes"



Ogenetics

29 September, 2006 Polaris

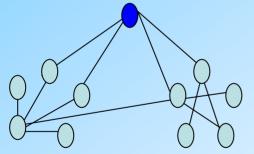
Weighted vs. Unweighted Networks

Network = Adjacency matrix $A=[a_{ij}]$ encodes whether/how a pair of nodes is connected.

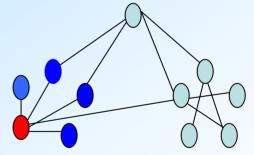
- A is a symmetric matrix with entries in [0,1]
- For **unweighted** networks, $a_{ij} = 1$ if two genes are adjacent (connected) and 0 otherwise.
- For weighted networks, the adjacency matrix reports the connection strength between gene pairs

Network Modules

Whole network connectivity



Intramodular connectivity



Identifying Key Players of Interest

Imagine you wanted to recruit students to your science program. Popularity alone might suggest the head cheerleader or quarterback.

Head Cheerleader

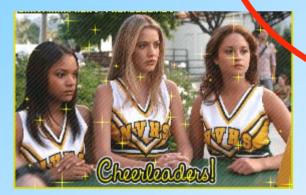
Star Quarterback



But, the head of the chess club would probably be a better bet!

Chess Club President

Cheerleader



Quarterback



Two Network Definitions

 Number of friends = "Connectivity"
 Gene Connectivity = row sum of the adjacency matrix, sum of genei's connection strengths

$$k_i = \sum_j a_{ij}$$

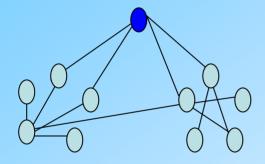
 Chess Club, Sport Teams = "Modules"
 Gene Module = cluster of highly connected (similarly expressed) genes in a network

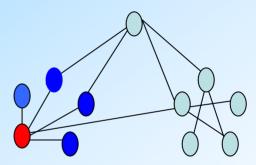
Ogenetics

Intra-modular connectivity is biologically and mathematically more meaningful than whole network connectivity

Whole network connectivity

Intramodular connectivity





- Hub genes are module genes in co-expression networks
- Genes that are not in modules tend to have low connectivity
- Module genes have relatively high connectivity
- Module genes have high connectivity within their module

Modules, not individual genes, are key drivers of the network

Gene Module

- A group of co-expressed genes
- A set of tightly co-regulated genes
- A biological pathway?

Gene Network Analysis

- In gene co-expression networks, each gene corresponds to a node.
- Two genes are connected by an edge if their expression values are highly correlated.
- Describes the presence of Hub Nodes that are connected to a large number of other nodes
- Defines Gene Modules as sets of tightly coregulated genes

An Adjacency Function is used to turn co-expression information into a network

- Measure co-expression by the absolute value of the Pearson correlation
- Define an adjacency matrix by using an adjacency function A(i,j)=AF(|cor(x[i],x[j])|)
- The adjacency function AF is a monotonic function that maps [0,1] onto [0,1]
- We consider 2 classes of AF
 - Hard Thresholding:

Step Function AF(s) = I(s > tau) with parameter tau

– Soft thresholding:

Continuous Power Adjacency Function $AF(s) = s^{b}$ with parameter b

• The choice of the AF parameters determines the properties of the network.

Figure 1

A Array Data



Steps for constructing a co-expression network

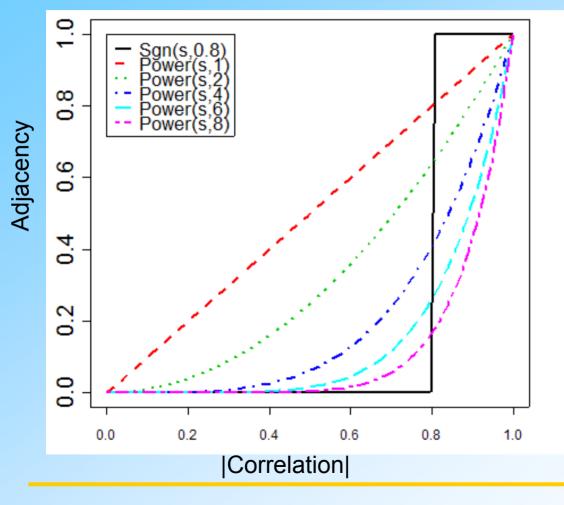
- A. Take microarray gene expression data
- Measure concordance of gene B. expression with a Pearson correlation
- C. The Pearson correlation matrix is either dichotomized to arrive at an adjacency matrix \rightarrow unweighted network

Or

D. Transformed continuously with the power adjacency function \rightarrow weighted network

Adjacency Functions

Connection Strength (Adjacency) vs. Correlation

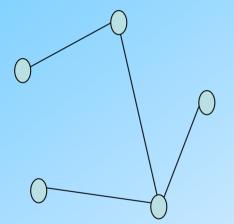


Adjacency $a_{ij} = |cor(gene_i, gene_j)|^{\beta}$

- Step function (hard thresholding) is indicated by the black, solid line
 → unweighted
- Power adjacency functions (soft thresholding) are indicated by colored, dashed lines
 → weighted

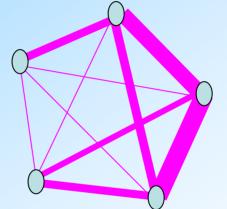
Weighted vs. Unweighted Networks

Unweighted Network View



Some genes are connected All connections are equal

Weighted Network View

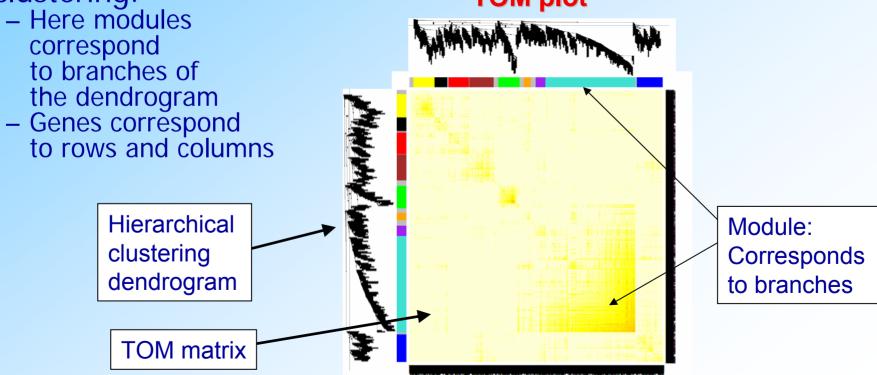


All genes are connected Connection Width = Connection strength

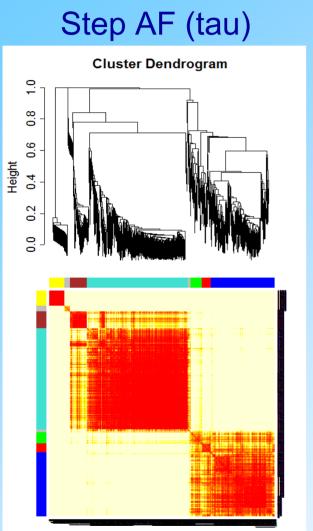
Hard thresholding may lead to loss of information

Topological Overlap Matrix Using the TOM to Cluster Genes

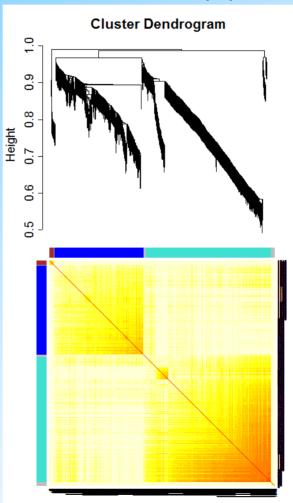
- To group nodes with high topological overlap into modules (clusters), we typically use average linkage hierarchical clustering coupled with the TOM distance measure.
- Once a dendrogram is obtained from a hierarchical clustering method, we choose a height cutoff to arrive at a clustering.
 TOM plot



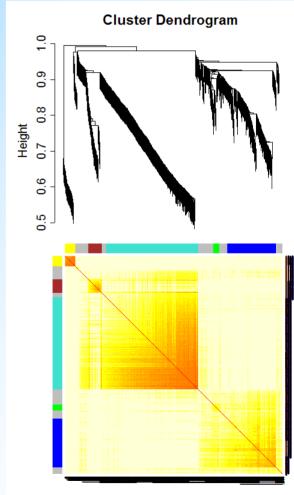
Dendrogram "trimmed" to create modules



Power AF (b)



Sigmoid AF

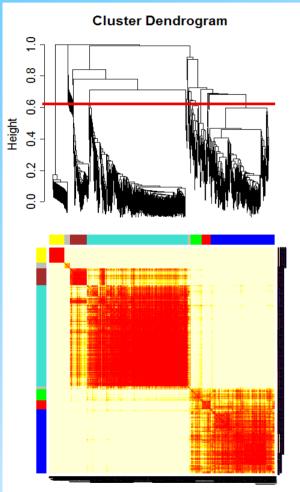


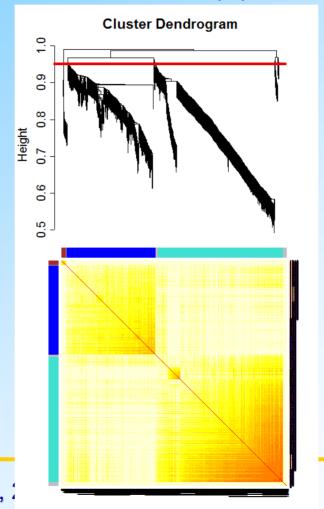
In practice, module detection is relatively robust to choice of Adjacency Function (AF)

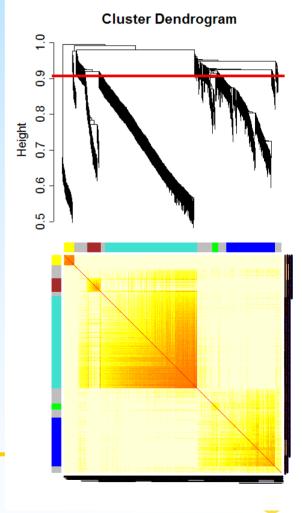
Step AF (tau)

Power AF (b)

Sigmoid AF





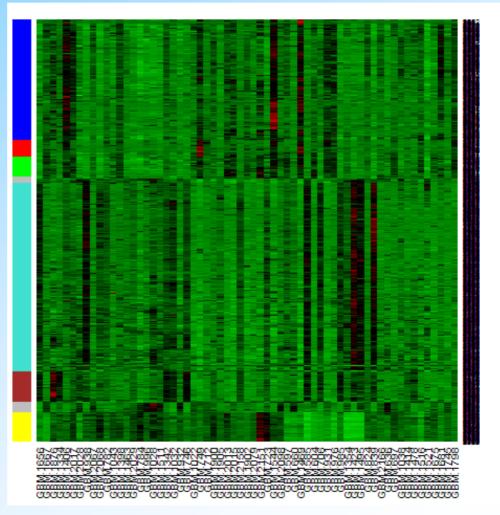


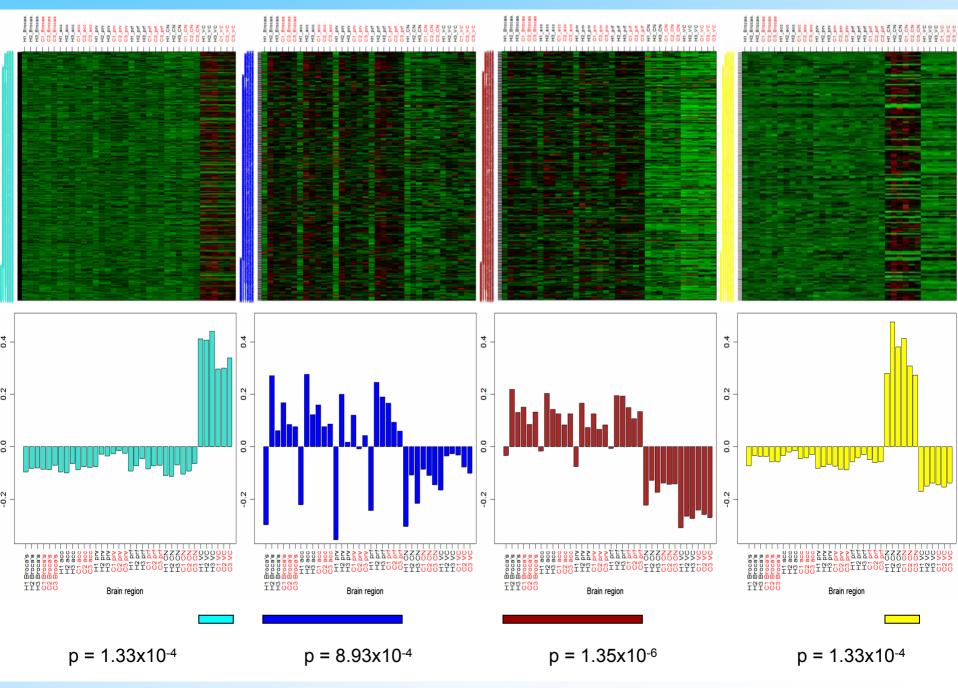
Identifying Gene Co-expression Modules

Rows = Genes Color bands indicate modules

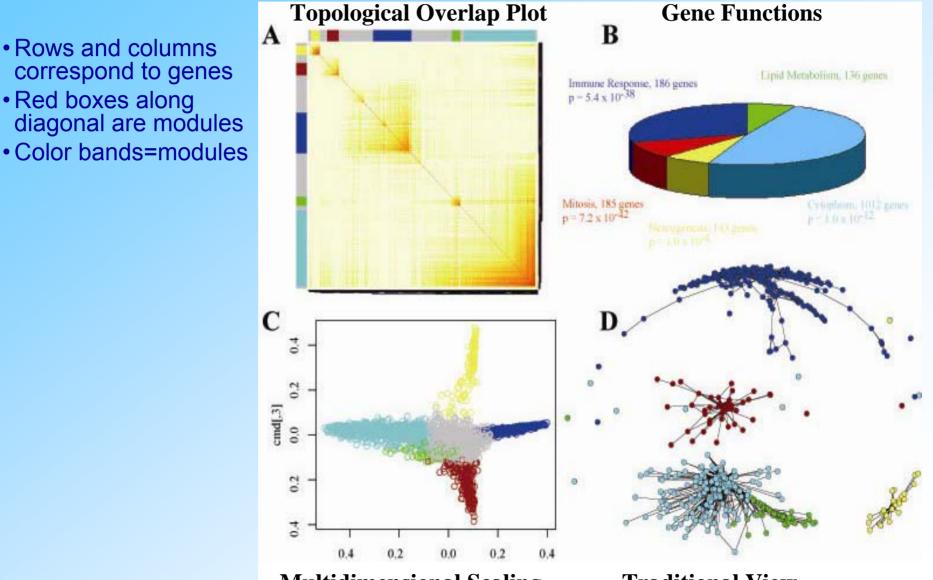
Characteristic vertical bands indicate tight co-expression of module genes

Columns=Brain tissue samples





Different Ways of Depicting Gene Modules



Multidimensional Scaling

Red boxes along

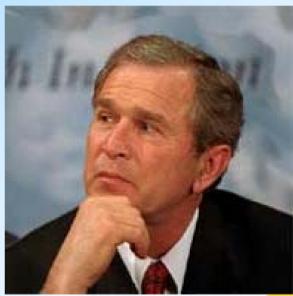
Traditional View

Comparing Human and Chimp Brains

Mike Oldham, Steve Horvath, Dan Geschwind

Comparing Human and Chimp Brains

 Only six million years separate chimp...



...and man

What changed?

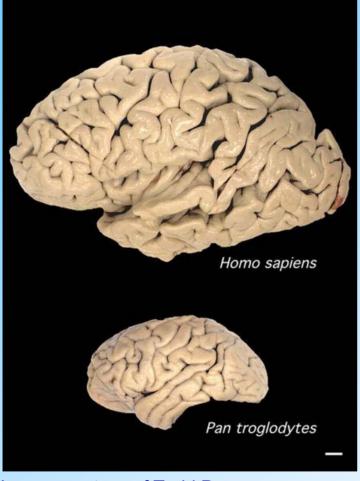


Image courtesy of Todd Preuss (Yerkes National Primate Research Center)

Polaris 29 September, 2006

- Despite pronounced phenotypic differences, genomic similarity is ~96% (including single-base substitutions and indels)
- Similarity is even higher in protein-coding regions

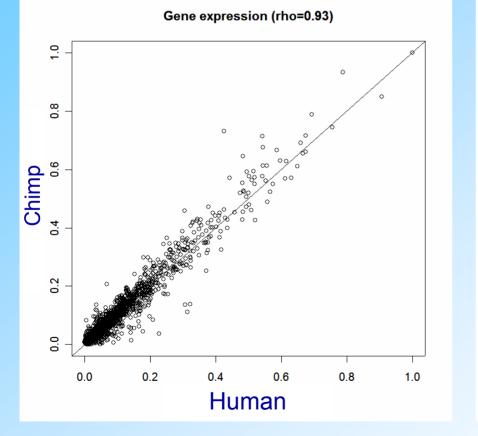
Cheng, Z. et al. (2005) Nature 437, 88-93

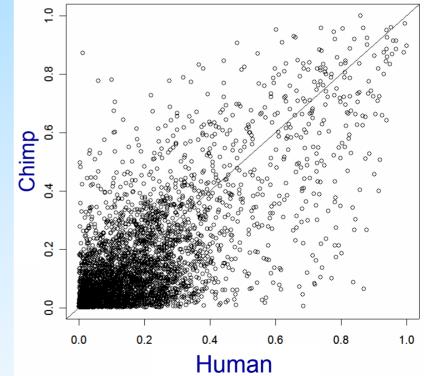
In the Brain Gene Expression is More Strongly Preserved than Gene Connectivity

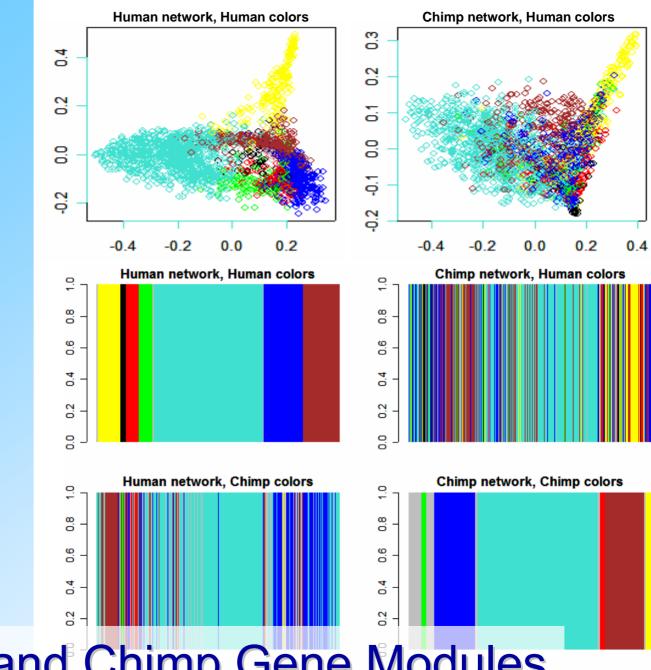
Expression

Connectivity

Gene connectivity (rho=0.60)







Human and Chimp Gene Modules

Comparing Human and Chimp Brains

- Gene Expression is highly preserved across species brains
- Gene Co-expression is less preserved
- Gene modules correspond roughly to brain architecture

Conclusion: Molecular wiring makes us human

Integrating Gene Co-expression Networks With Genetic Marker Data in Study of Chronic Fatigue Syndrome

CAMDA

CRITICAL ASSESSMENT OF MICROARRAY DATA ANALYSIS

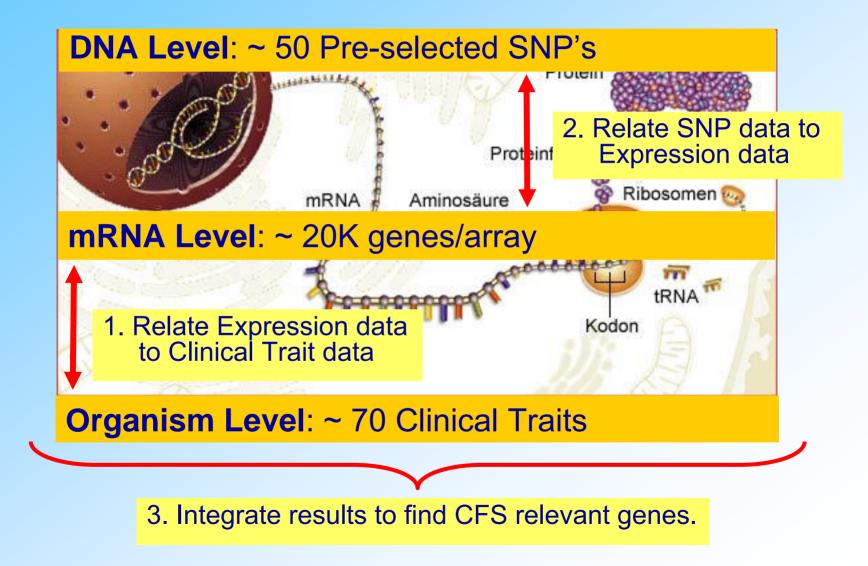
Publicly available data set -

- Clinical Data
- Expression Data
- SNP Data

Chronic Fatigue Syndrome

- Complex Disease
- Diagnosis a minimum of six months of medically unexplained, debilitating fatigue
- Other symptoms:
 - elevated levels of cortisol due to an overactive hypothalamic-pituitary-adrenal (HPA) axis
 - altered immune response substantiated by high T-cell counts
 - skeletal muscle dysfunction
- May be triggered by viral infection
- Expression studies report over-expression of immune response genes

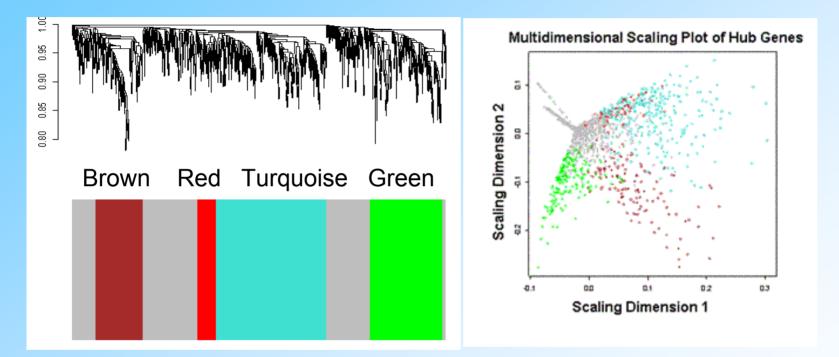
Chronic Fatigue Syndrome



Analysis Overview

- 1. Construct gene co-expression network from microarray data
- 2. Identify module of interest using trait data.
- 3. Determine informative SNP's and relate them to gene co-expression network.
- 4. Identify genes with statistical and biological significance.
- 5. Choose subset of CFS and control samples for validating the candidate biomarker.

Four Modules Identified Using Hierarchical Clustering



- Grey colors indicate genes outside of any module.
- MDS plot indicates clear separation of brown, green, turquoise modules.

Polaris 29 September, 2006

Analysis Overview

- 1. Construct gene co-expression network from microarray data. (Zhang and Horvath 2005)
- 2. Identify module of interest using trait data.
- 3. Determine informative SNP's and relate them to gene co-expression network.
- 4. Identify genes with statistical and biological significance.
- 5. Choose subset of CFS and control samples for validating the candidate biomarker.

A clinical trait gives rise to a "Trait Significance" measure

TraitSignificance(i) = |cor(x(i), TRAIT)|where x(i) is the gene expression profile of the i^{th} gene.

Module Trait Significance = Average(Trait Significance values for genes in a module)

Trait Significance Results

- Table shows trait significance for each module.
- Every module was characterized in terms of a group of clinical traits.
- Interested in CFS severity trait "CLUSTER" a composite score of 14 clinical traits (evaluation responses).
- Focused on the green module (184 genes) since it was related to the CLUSTER trait.

	Mod				
Clinical Traits	Turquoise	Grey	Red	Brown	Green
Shortness of Breath	0.176 (0.003)	0.096 (0.001)	0.162 (0.009)	0.107 (0.005)	0.078 (0.004)
Mental Health	0.189 (0.003)	0.105 (0.002)	0.215 (0.005)	0.188 (0.004)	0.144 (0.004)
Role Emotional	0.292 (0.003)	0.139 (0.002)	0.336 (0.005)	0.217 (0.005)	0.172 (0.004)
Sinus Nasal	0.06 (0.003)	0.076 (0.001)	0.048 (0.005)	0.135 (0.004)	0.133 (0.004)
Muscle Pain	0.108 (0.002)	0.076 (0.001)	0.085 (0.006)	0.116 (0.003)	0.059 (0.002)
Unrefreshing Sleep	0.092 (0.002)	0.071 (0.001)	0.064 (0.004)	0.12 (0.003)	0.054 (0.002)
CLUSTER	0.102 (0.003)	0.105 (0.002)	0.131 (0.008)	0.115 (0.006)	0.216 (0.004)
Abdominal Pain	0.069 (0.003)	0.082 (0.001)	0.091 (0.009)	0.094 (0.005)	0.122 (0.005)

Trait Significance Results

- Table shows trait significance for each module.
- Every module was characterized in terms of a group of clinical traits.
- Interested in CFS severity trait "CLUSTER" a composite score of 14 clinical traits (evaluation responses).
 Focused on the green module (184 genes) since it was related to the CLUSTER trait.

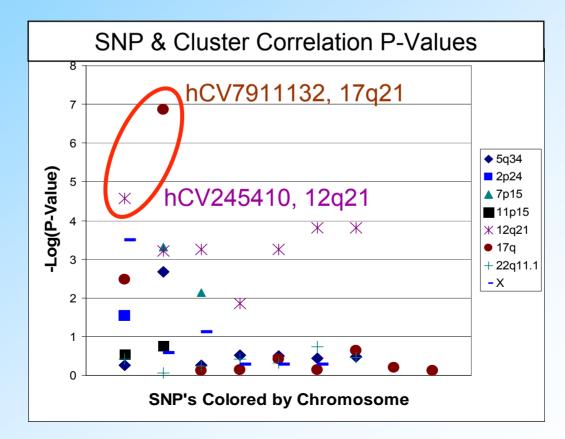
	Mod				
Clinical Traits	Turquoise	Grey	Red	Brown	Green
Shortness of Breath	0.176 (0.003)	0.096 (0.001)	0.162 (0.009)	0.107 (0.005)	0.078 (0.004)
Mental Health	0.189 (0.003)	0.105 (0.002)	0.215 (0.005)	0.188 (0.004)	0.144 (0.004)
Role Emotional	0.292 (0.003)	0.139 (0.002)	0.336 (0.005)	0.217 (0.005)	0.172 (0.004)
Sinus Nasal	0.06 (0.003)	0.076 (0.001)	0.048 (0.005)	0.135 (0.004)	0.133 (0.004)
Muscle Pain	0.108 (0.002)	0.076 (0.001)	0.085 (0.006)	0.116 (0.003)	0.059 (0.002)
Unrefreshing Sleep	0.092 (0.002)	0.071 (0.001)	0.064 (0.004)	0.12 (0.003)	9.054 (0.002)
CLUSTER	0.102 (0.003)	0.105 (0.002)	0.131 (0.008)	0.115 (0.006)	0.216 (0.004)
Abdominal Pain	0.069 (0.003)	0.082 (0.001)	0.091 (0.009)	0.094 (0.005)	0.122 (0.005)

Analysis Overview

- 1. Construct gene co-expression network from microarray data. (Zhang and Horvath 2005)
- 2. Identify module of interest using trait data.
- 3. Determine informative SNP's and relate them to gene co-expression network.
- 4. Identify genes with statistical and biological significance.
- 5. Choose subset of CFS and control samples for validating the candidate biomarker.

Finding SNPs Correlated with the CLUSTER Trait

- We chose two SNPs with highest CLUSTER correlation
- SNP12 = hCV245410 on 12q21 (p-value = 0.01)
- SNP17 = hCV7911132 on 17q21 (p-value = 0.001)



Correlation with relevant SNPs defines "SNP Significance" of the ith gene

> SNPSignificance = |cor(x(i), SNP)|(Where SNP data is additively coded)

- Conceptually related to a LOD score at the SNP marker for the *i*th gene expression.
- Why correlate SNP and gene expression data?
 Puts SNP effect on the same footing as trait effect and gene-gene connection strengths. Effect sizes are important in our analysis.

Polaris 29 September, 2006

SNP Filtering & Significance Results

- Table shows the average SNP significance for each module.
- Green module genes most correlated with SNP12.
- "SNP12 Sub-sample" = average module correlations with SNP12 among samples that have a particular SNP12 and SNP17 genotype.
- Higher correlation(green module,SNP12) in the sample subset.

	Module SNP Significance (Standard Error)				
SNPs	Turquoise	Grey	Red	Brown	Green
SNP12	0.052 (0.002)	0.077 (0.001)	0.036 (0.004)	0.091 (0.004)	0.128 (0.004)
SNP17	0.056 (0.002)	0.064 (0.001)	0.045 (0.005)	0.039 (0.003)	0.04 (0.002)
SNP12 Sub-sample	0.128 (0.005)	0.144 (0.002)	0.067 (0.009)	0.203 (0.007)	0.186 (0.007)

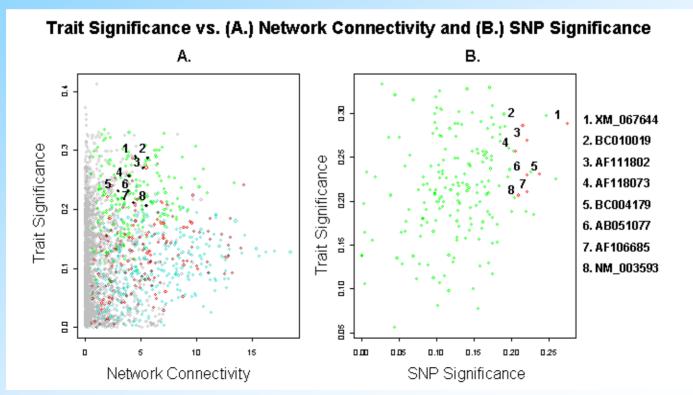
Analysis Overview

- 1. Construct gene co-expression network from microarray data. (Zhang and Horvath 2005)
- 2. Identify module of interest using trait data.
- 3. Determine informative SNP's and relate them to gene co-expression network.
- 4. Identify genes with statistical and biological significance.
- 5. Choose subset of CFS and control samples for validating the candidate biomarker.

Integration of Genetic and Network Analysis

Combined Gene Selection Criteria:

- 1. CLUSTER trait significance > 0.2
- 2. SNP12 significance > 0.2
- 3. Genes with high intramodular connectivity (top 50%)
- 4. Member of the Green Module



Eight Most Significant Genes:

			P-Value (Correlation)		
Accession	Gene Symbol (Name) and Information	Locus	CLUSTER	SNP	Biomarker
NM_003593	FOXN1 (forkhead box N1): Functions in defense response, T-cell immunodeficiency, and known to cause nudity in mice and humans. Expressed in thymus.	17q11-q12	0.055 (-0.21)	0.018 (0.21)	YES
AF118073	PRDX3 (peroxiredoxin 3): Regulates cell proliferation, differentiation, and antioxidant functions.	10q25-q26	0.017 (-0.26)	0.02 (0.21)	YES
AB051077	PEX6 (peroxisomal biogenesis factor 6): absence results in zellweger syndrome (zws), neurological and metabolic defects.	6p21.1	0.032 (-0.23)	0.013 (0.22)	YES
AF106685	MYEF2 (myelin expression factor 2): myoblast cell differentiation and transcription.	15q21.1	0.05 (-0.21)	0.012 (0.22)	YES
AF111802	CRNKL1 (Crn, crooked neck-like 1 (Drosophila)): expressed in testes, involved in mRNA splicing	20p11.2	0.012 (-0.27)	0.013 (0.22)	YES
BC010019	MED8 (mediator of RNA polymerase II transcription, subunit 8 homolog (yeast)): regulates transcription.	1p34.2	0.007 (-0.29)	0.015 (0.22)	YES
XM_067644	Similar to polynucleotide phosphorylase-like protein and 3-5 RNA exonuclease.		0.007 (-0.29)	0.002 (0.27)	NO
BC004179	Unknown (protein for mgc:2780)		0.032 (-0.23)	9.007 (0.24)	NO A

Ogenetics

Polaris 29 September, 2006 NCBI (http://www.ncbi.nlm.nih.gov)

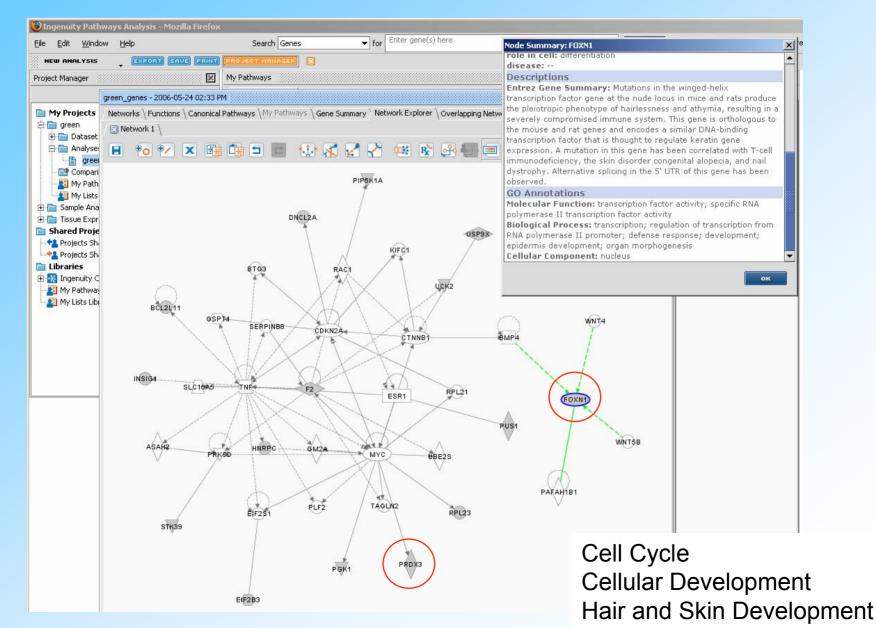
FOXN1 Statistical Significance:

- Member of the green module that is related to the CFS severity trait (CLUSTER)
- Significantly associated with SNP 12 (p-value = 0.0179), which is significantly associated with CLUSTER (p-value = 0.010)
- High intramodular network connectivity
- Moderate direct correlation with the CLUSTER trait

FOXN1 Biological Significance

- Mutations in mice & humans cause:
 - Nudity.
 - Depleted immune system due to dysfunctional T-cells.
- Highly expressed in thymus epithelia cells.
- Thymus involved in immune system:
 - Converts lymphocytes to T-cells.
 - Releases functional T-cells to combat infection.

Ingenuity Pathway Analysis



FOXN1: Validation for Chronic Fatigue Syndrome

CFS patients have an overactive immune system with high T cell production and T cell abnormalities \Rightarrow FOXN1 may be highly expressed in CFS.

To further investigate this finding? \Rightarrow A FOXN1 knockout mouse available

⇒ Explore the relationship between FOXN1 and fatigue in a mouse model

Polaris 29 September, 2006

Analysis Overview

- 1. Construct gene co-expression network from microarray data. (Zhang and Horvath 2005)
- 2. Identify module of interest using trait data.
- 3. Determine informative SNP's and relate them to gene co-expression network.
- 4. Identify genes with statistical and biological significance.
- 5. Choose subset of CFS and control samples for validating the candidate biomarker.

Relationship between FOXN1 and SNP12 & 17 genotypes

- The two SNP's most correlated with the CLUSTER • phenotype – most differentially expressed between cases and controls – identify a sub-phenotype of CFS.
- SNP rule: SNP 12 SNP 17 • + 2

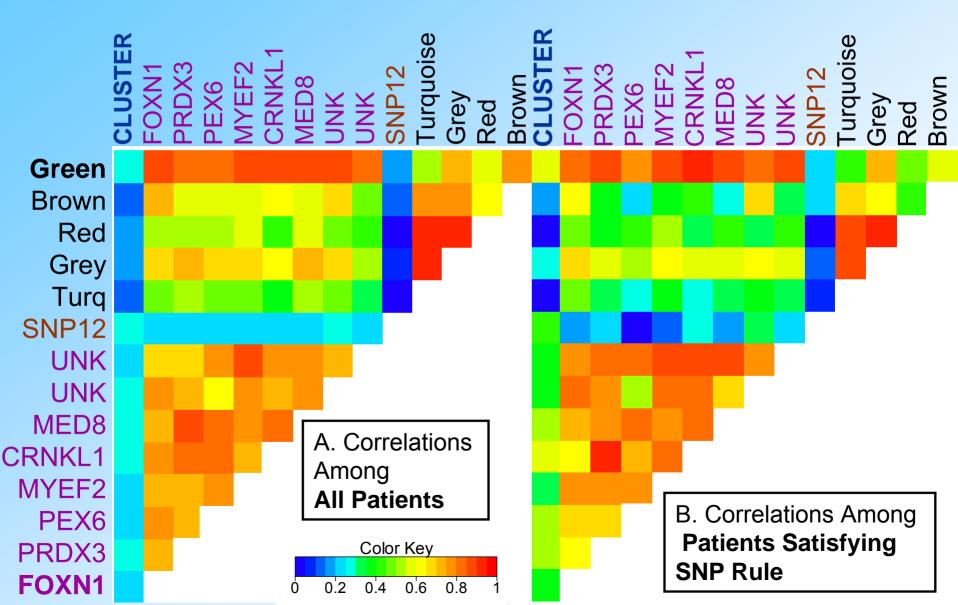
1

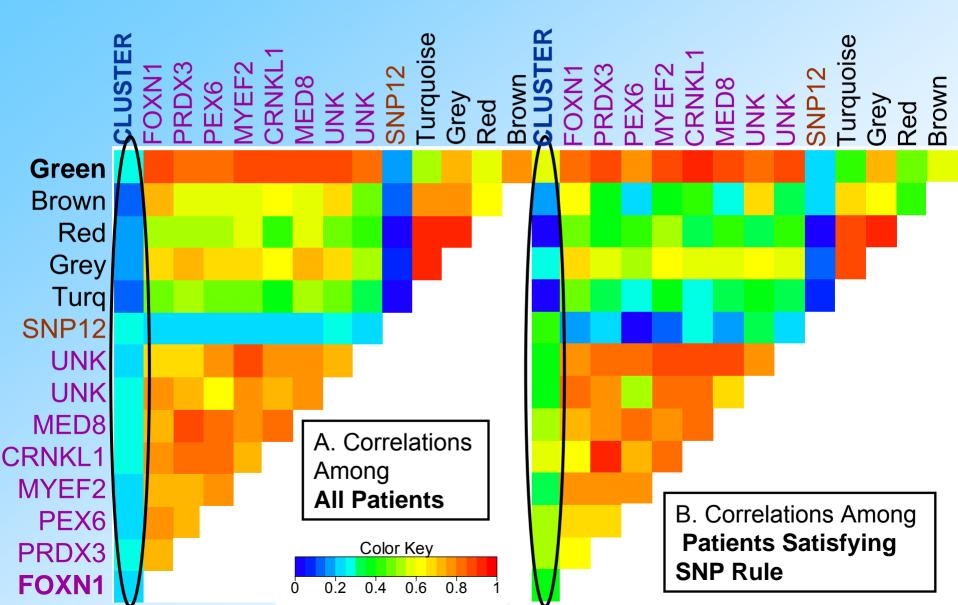
We define a sample subgroup where all individuals have 0+2 or 1+2 genotypes.

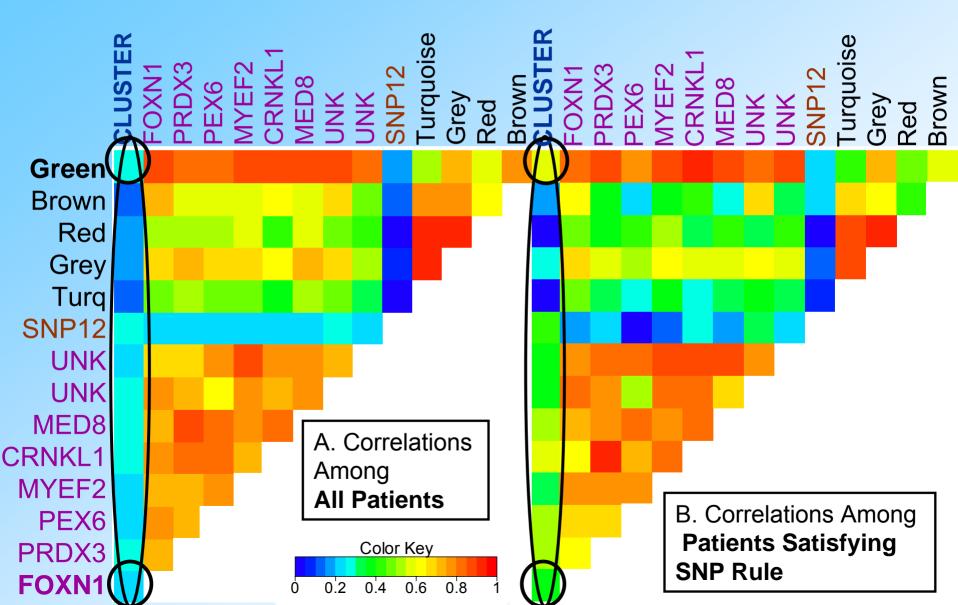
2

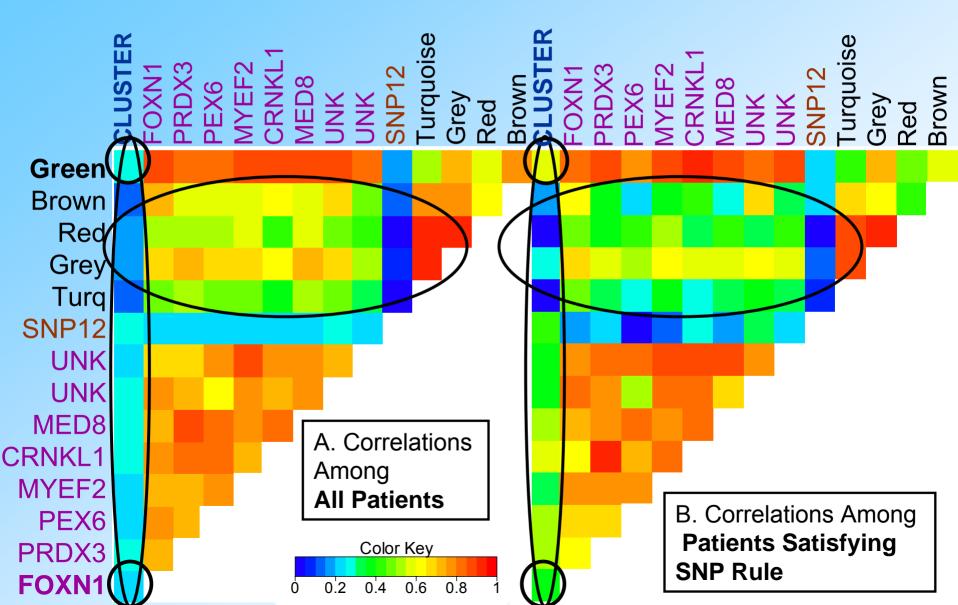
- About 1/3 of the samples satisfy the SNP rule.
 - For these samples FOXN1 is useful for predicting CFS severity.

or









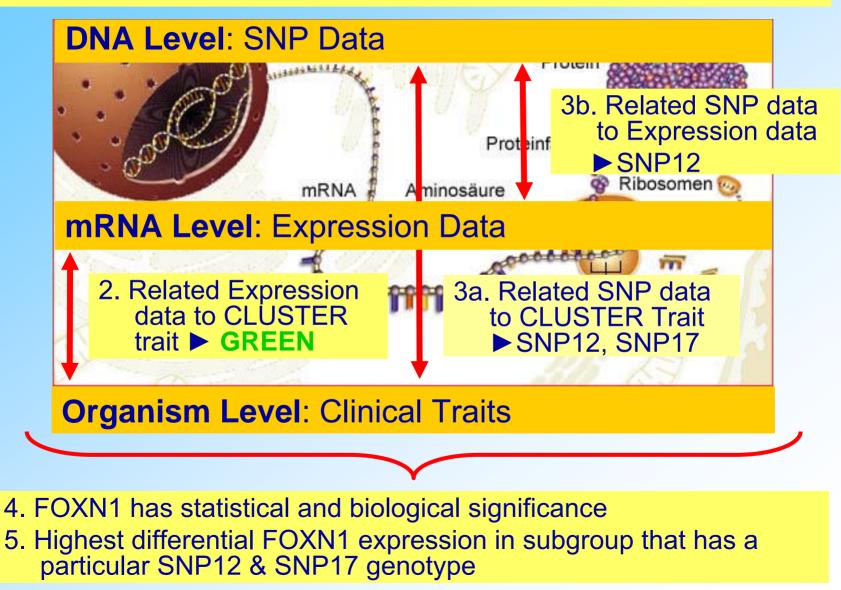
SNP Filtering & Significance Results

- Table shows the average SNP significance for each module.
- Green module genes most correlated with SNP12.
- "SNP12 Sub-sample" = average module correlations with SNP12 among samples that have a particular SNP12 and SNP17 genotype.
- Higher correlation(green module,SNP12) in the sample subset.

		Module SNP Significance (Standard Error)				
SNPs	Turquoise	Grey	Red	Brown	Green	
SNP12	0.052 (0.002)	0.077 (0.001)	0.036 (0.004)	0.091 (0.004)	0.128 (0.004)	
SNP17	0.056 (0.002)	0.064 (0.001)	0.045 (0.005)	0.039 (0.003)	0.04 (0.002)	
SNP12 Sub-sample	0.128 (0.005)	0.144 (0.002)	0.067 (0.009)	0.203 (0.007)	0.186 (0.007)	

Summary

1. Constructed gene co-expression network from the microarray data.



Conclusion

- Network approaches provide a means to bridge the gap from individual genes to systems biology.
- Integrating gene co-expression networks with genetic marker and trait information helps us understand what factors influence the relationship between gene expression and biological pathways

Acknowledgements

Steve Horvath

Lin Wang Jun Dong Chi-ying Lee Ai Li Bin Zhang Wei Zhao

Dan Geschwind Mike Oldham

Eric Sobel Jenny Papp Anja Presson

Polaris 29 September, 2006

UCLA HUMAN Ogenetics

Network Construction

Bin Zhang and Steve Horvath (2005) A General Framework for Weighted Gene Co-Expression Network Analysis Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, Article 17.

