Advances in Mediterranean Aquaculture, Porto Conte - Alghero, 29-30 June 2009

FRESHNESS AND HEALTHY EATING QUALITY OF FARMED FISH

Prof. Bianca Maria Poli University of Florence **President of ASSOITTICA ITALIA and FEDERPESCA**

Fish is perceived as healthy and nutritional food its *freshness* and *price* the most important reasons to buy it by European consumers. Thanks to the natural abundance of LC n-3 highly unsaturated fatty acids (HUFA) C20:5 (EPA) and C22:6 (DHA), that characterise lipids, vitamin D, phospholipids, peptides, taurin, iodine, selenium...

Dietary Guidelines of International Committee has recommended at least a twice-a week fish consumption to prevent pathologies such as cardiovascular diseases, colon cancer, psychiatric & psychological diseases, neurodegenerative diseases, inflammatory bowel diseases.... However, to exert all the potential beneficial effects without any risks for human health, it has to be

produced and maintained

safe, free from contaminants and fresh up to the consumer.

Freshness is more a concept than an entity

''Fish freshness means that fish is in its entire properties not far away from those properties it had in the living state or that only of short period of time has past since the fish has been caught or harvested... it is more a complex idea of an ideal state of wholesomeness, soundness and perfection of a newly harvested fish'' "It is advisable to speak about freshnesses,

where freshness t=0 is the freshness at time of catch or harvest and freshness t=0 has to be differentiated from the initial one....

So it can be concluded that freshness is an attribute which changes continuously but comprises a certain time period'' (Oehlenschäger and Sörensen, 1997)

FISH QUALITY CHANGES

The high levels of non protein nitrogenous compounds and of n-3 HUFA, highly susceptible to oxidation, together with the low carbohydrate content and the consequent high final pH in muscle, not as efficient in microbial proliferation inhibition, contribute to fish trait of high perishable food in respect to other meats.

MOREOVER

All conditions affecting fish biochemical processes taking place at death and during *post mortem* period, can heavily influence the expression of its flesh quality and the subsequent changes during storage, including freshness loss and shelf life, all of them well indicated by the changes of the physical/ sensory/organoleptic attributes such as *rigor* status, general appearance and colour of skin/muscle/eye/gills, texture, and odour of the raw products.

COMPLEX SPOILAGE CHANGES IN FISH

Identify freshness/quality indicators

Fresh odor

Spoilage odor

Endogenous enzymes – lipoxygenase, cathepsin, calpain

Oxidation pro- and antioxidants

Microbial growth SSO _____ Specific Spoilage Organisms *Glycolysis* pH↓, Lactic acid↑ *Rigor mortis*, ATP→ Inosine →Hx →Urea *Autolysis*

Protein / i.e. sarcoplasmic proteins

 \rightarrow peptides \rightarrow amino acids

Lipids / i.e. phospholipids \rightarrow PUFA

Soluble substances in the muscle Nucleotides NPN non protein nitrogenous components TMAO → TMA/DMA pH ↑

Texture firm – soft

Colour changes

Fish Freshness

Even alone is a fundamental parameter of fish safety and quality. It has been much work on developing scientific methods for accurate, rapid, inexpensive fish freshness measure.

Sensory Evaluation

Microbial methods Volatile compounds Protein and lipids ATP Metabolites

Physical Measurements

For the present, sensory assessment, with all its disadvantages, remains the favoured option and the point of reference

use of sensors

FISH QUALITY EVALUATION BY SENSORIAL ANALYSIS EU SCHEME (Reg. 2406/96)

	Criteria						
		Freshness category		Marca Jackson J. (I)			
	Extra	А	в	Not admitted (*)			
Skin	Bright, iridescent pigment (save for redfish) or opales- cent; no discol- ouration	Pigmentation bright but not lustrous	Pigmentation in the process of becoming discol- oured and dull	Dull pigmenta- tion (²)			
Skin mucus	Aqueous, trans- parent	Slightly cloudy	Milky	Yellowish grey, opaque mucus			
Eye	Convex (bulging); black, bright pupil; transparent cornea	Convex and slightly sunken; black dull pupil; slightly opalescent cornea	x and Flat; opalescent y sunken; cornea; opaque full pupil; y opalescent				
Gills	Bright colour; no mucus	Less coloured; transparent mucus	Brown/grey becoming discol- oured; thick, opaque mucus	Yellowish; milky mucus (2)			
Peritoneum (in gutted fish)	Smooth; bright; difficult to detach from flesh	Slightly dull; can be detached from flesh	Speckled; comes away easily from flesh	Does not stick (2)			
Smell of gills and abdominal cavity	Saouradu	No small of	Formentade alightic	C)			
other than plaice	Scaweedy	seaweed; neutral smell	sour	Sour			
- plaice	Fresh oily; peppery; earthy smell	Oily; seaweedy or slightly sweetish	Oily; fermented; stale, slightly rancid	Sour			

RAW FISH

Criteria to evaluate freshness category

(Extra, A, B, not admitted) of fish

E CLASS QUALITA' EXTRA (POTASSOCO)

L'occhio è luminoso, chiaro e convesso

Le branchie sono di un rosso brillante e c'è poco o niente muco. Odorano di alghe.

La pelle è chiara, lucente e colorata. Il muco è trasparente

A CLASS QUALITA' BUONA POTASSOLO

L'occhio è meno luminoso e leggermente infossato. La copertura dell'occhio è leggermente scura.

La pelle è meno lucente e colorata. Il muco è leggermente opaco.

B CLASS CATTIVA QUALITA' (POTASSOLO)

L'occhio è appannato e infossato. E' lattiginoso e vira verso il marrone

Le branchie sono pallide e diventano marroni. Il muco è opaco. Hanno un odore acre.

La pelle diventa decolorata e opaca. Il muco è lattiginoso.

Quality Index Method (QIM) s d salme							
Quality parameter		Description	E	Score			
Skin	Colour/	Pearl-shiny all over the	e skin	0			
	appearance	The skin is less pearl-s	shiny	1			
		The fish is yellowish, n	nainly near the abdon	nen 2			
	Mucus	Clear, not clotted		0			
		Milky, clotted		1			
		Yellow and clotted		2			
	Odour	Fresh seaweedy, nutral		0			
		Cucumber, metal, hay		1			
		Sour, dish cloth		2			
		Rotten		3			
	Texture	In rigor		0			
		Finger mark disappear	1				
		Finger leaves mark over	er 3 seconds	2			
Eyes	Pupils	Clear and black, metal	shiny	0			
-	-	Dark grey		1			
		Mat, grey		2			
	Form	Convex		0			
		Flat		1			
		Sunken		2			
Gills	Colour	Red/dark brown		0			
		Pale red, pink/light bro	wn	1			
		Grey-brown, brown, gre	ey, green	2			
	Mucus	Transparent		0			
		Milky, clotted		1			
		Brown, clotted		2			
	Odour	Fresh, seaweed		0			
		Metal, cucumber		1			
		Sour, mouldy		2			
		Rotten	3				
Abdomen	Blood in	Blood red/not present		0			
	abdomen	Blood more brown, yel	lowish	1			
	Odour	Neutral		0			
		Cucumber, melon		1			
		Sour, fermenting		2			
		Rotten/rotten cabbage		3			
Quality I	ndex			0-24			

Changes in outer appearance of skin, eyes, gills and odour and texture and score system from 0 to 3 demerit points to have the Quality Index.

QIM Schemes: brill (Rhombus laevis), cod (Gadus morhua), deep water shrimp (Pandalus borealis), farmed salmon (Salmo salar), fjord shrimp (Pandalus borealis), haddock (Melanogrammus aeglefinus), herring (Clupea harengus), peeled shrimp (Pandalus borealis), plaice (Pleuronectes platessa), pollock (Pollachius virens), redfish (Sebastes mentella/marinus), sole (Solea vulgaris) and turbot (Scophtalmus maximus).

	<mark>)</mark> uality	Index M	ethod (QIM) scheme for farme	d sea bass	
Q	Quality parameter		Description	Score	The second
S S	kin	Colour/	Bright, iridescent pigmentation	0	
		appearanc	Rather dull, becoming discoloured (head)	1	and the second
er			Green, yellowish, mainly near the abdomen	2	and the second
		Odour	Fresh seaweedy, neutral	0	
			Cucumber, metal, hey	1	
			Sour, dish cloth	2	AN C
			Rotten	3	Alt
		Texture	In rigor	0	
			Finger mark disappears rapidly	1	mone
			Finger leaves mark over 3 seconds	2	10.00
E	yes	Pupils	Clear and black, metal shiny	0	1
		-	Grey	1	10.00
			Mat, grey	2	
		Form	Convex	0	
			Flat	1	
			Sunken	2	
G	G ills	Colour	Blood red/orange	0	
			Pale red, pink/light brown	1	
			Grey-brown, brown, grey	2	
d dfieb		Mucus	Transparent	0	
			Milky, clotted	1	
			Brown, clotted	2	a a min
		Odour	Fresh, seaweed, neutral	0	-
10 15 20 Daysin Ice			Metal, grass	1	
			Sour, mouldy,dish cloth	2	Provent in
			Rotten	3	
bro et al F	lesh, fille	Colour	Translucent, bluish	0	
			Waxy, milky	1	A State
			Opaque, yellow, brown spots	2	Nicha
V	'iscera	Solution	Whole	0	and the second
			Beginning to dissolve	1	1 - 5
			Viscera dissolved	2	
) na lity Iı	ndex		0-22	

Principal Components Analysis on

the sensorial scores and instrumental parameters showed that the sensorial parameters, K₁, Rigor index, dielectric properties were the most correlated with the first factor.

• The external sensorial parameters of fish alone can be used to measure freshness.

•K₁, Rigor index and dielectric properties are particularly sensitive to variations of the state of freshness and could be considered valid alternative to sensory analysis in sea bass, sea bream, meagre and pantex (Pagrus mayor x Dentex dentex).

Parisi et al. 2002, Aquaculture, 214: 153-166.

Changes during the shelf life in sea bream: application of UE scheme & K₁ value

 $K_1 = ([HxR]+[Hx] / [IMP]+[HxR]+[Hx]) \times 100$

Parisi et al., 2008

Shelf-life evolution, Rigor index, Impedance and K₁ index during 10 days after death (1 °C with ice cover) in meagre

Final product quality also depend to stress from rearing, handling, transport, and mostly to stunning/killing practices From a living fish into a food product Muscle metabolism **Biochemical Physical** reactions reactions Stress responses MATERIAL **FISH** RAW FOR PROCESSING

FROM A LIVING FISH INTO A FOOD PRODUCT

rigor development muscle pH muscle texture water holding capacity colour etc.

 $RI\% = 100 \times D - D_0 / D_0$

A =Asfixied fish earlier full rigor (RI 100% at 1 h)

E= Elettrically stunned fish reached 100% RI only at 8 h

		24h	72h	144h	192h	
Portion	Α	E	Α	В	В	
size	Е	E	А	Α	В	
		24h	72h	144h	192h	240h
m	Α	E	Α	Α	Α	unfit
	Е	E	Α	Α	Α	В

Poli et al., 2007

Freshness classes and shelf life in sea bass

Jul	9d	10d	11d	12d	13d	14d	15d
IW		A (1.60)			B (0.92)	B- (0.54)	
IWN100		A (1.84)			B (1.08)	B- (0.63)	
IWN40		A (1.75)			B (1.00)	B- (0.62)	
IWN70		A (1.59)			B (0.92)	na (0.38)	
EL1p24	A (1.75)		·	B- (0.59)	B- (0.54)	na	
EL2p120	A (1.59)			na (0.33)	na (0)		
Nov		10d	11d	12d	13d	14d	15d
IW			A (1.73)	A (1.64)		B (0.92)	
IWN40			B (1.21)	B (1.45)		B (0.79)	
IWN70			B (1.19)	B (1.43)		B (0.96)	
EL2p40			A (1.61)	B (1.09)		B (0.75)	
EL1p40			A (1.64)	B (1.12)		B- (0.54)	
EL1p40N			A (1.77)	B (1.16)		B- (0.63)	
EL1p40N70			B (1.40)	B (1.03)		B/na (0.50)	

EU scheme (Rule 2406/96 EEC)E class(Extra): very freshA class:freshB class:staleunfit :not edible

Electrical stunning: shorter shelf life Ice Water (IW): more time in A class gas: same shelf life than IW

Zampacavallo et al., 2008

Freshness classes and shelf life in sea bream reared in floating cage

	72h	120h	168h	216h	240h	264h
Ice/Water 2:1 (IW)	E (2,7)	A (2,1)	A (1,9)	B (0,7)	B (0,9)	na (0)
IW 70%N ₂ 30%C0 ₂	E (2,7)	A (2,0)	A (1,6)	B/na (0,4)		na (0,3)
EL 50Hz 40V	E (2,8)	A (1,9)	A/B (1,5)	B (0,9)	na (0)	na (0)

Several stress and freshness/quality indicators

can be used to verify the fish stress condition at death and its reflexes on the product quality changes.

One of the most sensible and indicative parameters of the stress suffered and of the freshness/quality potential evolution is the early *full rigor mortis* onset and its rapid release

> Other good stress /quality early indicators are: ATP and its catabolites degradation rate pH measured in muscle or, better, in eye liquor Dielectric properties (Fish Tester) Muscular lactic acid Compactness None of them exhaustive if used alone!

TRIALS OF SEAFOOD CONSUMPTION

Influence on biological markers related to atherothrombosis

as a measure of

seafood healthy eating quality

LC omega-3 PUFA most likely slow or limit atherosclerosis due to risk factor reduction but also reduce risk of coronary events in people with advanced atherosclerosis

Three possible mechanisms:

Decreased cardiac arrhythmias
Decreased thrombosis
Decreased inflammation

Intake trial Seabass fillet components mean intake in 10 WK trial (g) in dislipidemic* subjects

n.708

Orbetello sea bass

	Flesh	LIPIDS	C20:5	C22:6	SFA	MUFA	N-3 PUFA	N-6 PUFA
MEAN	8067	679.6	47.8	75.8	136.7	169.1	155.8	60.0
SD	± 226	± 47.9	± 2.6	± 2.6	± 6.6	± 8.1	± 7.6	± 5.9

Mean EPA + DHA = 12.4 g/wk

(minimum suggested 3.5 g/wk by the International Society for the Study of Fatty acids and Lipids)

Cooking guidelines:

Microwave or normal owen, with the addition of salt and olive oil Poli et al., 2007 Sofi et al., 2009 * Dyslipidemia was defined as:

- Total cholesterol > 200 mg/dL
- LDL-cholesterol > 130 mg/dL
- Triglycerides > 150 mg/dL

Material and Methods

Total cholesterol LDL-cholesterol HDL-cholesterol Triglycerides

Interleukin-6 Interleukin-8 Interleukin-10 TNF-alpha

Multiplex beadbased assay (Bioplex)

Hemorheological profile

Whole Blood Viscosity Erythrocytes' filtration rate Plasma viscosity

Rotational Viscosimeter LS30 Filtrometer MF4

Intake trial Blood biomarkers

Biomarker	T ₀	T ₁₀	Variation
N-3 PUFA EPA DHA in erythrocytes %	4.11 ± 4.5 10.48 ± 4.8 0.26 ± 0.3 1.13 ± 0.62 3.01 ± 3.4 7.67 ± 3.73		2.5 4.3 2.5 times
Triglycerides mg/dL	166.9 ± 81.2	127.8 ± 47.3	- 23%
Interleukin-6 pg/mL	3.13 ± 2.49	1.95 ± 1.27	- 38%
Interleukin-8 pg/mL	17.43 ± 11	12.56 ± 6.6	-28%
WBV 20.400 sec-1	6.3 ± 0.39	6.3 ± 0.45	-5%
Erythrocytes' Filtration rate	5.33 ± 2.44	9.01 ± 2.75	+ 69%
P<0.05	S	OFI et al. 2009. Int. I. Ed	Sci. Nutr., 7:1-1

Intake trial Sea bass dietary short-term intake

seems to set up favourable biochemical changes in dyslipidemic subjects, with regard to lower circulating levels of markers of atherosclerosis, such as

- > lipid parameters
- > inflammatory markers
- > haemorheological profile

Poli et al., 2007 Sofi et al., 2009

AQUACULTURE CONTROLLED PRODUCTION OF SEAFOOD

Seierstad et al. Eur. J. Clin. Invest. 2005

Salmon

Intake trial Sea bream dietary short-term intake

Fisr Project - responsable Poli B.M. research group prof. Abbate R.

n. 400 Fillets FM

Intake trial FILLET COMPONENTS

%	FM	PP	Lev. Sig.
H ₂ 0	67.98	67,99	n.s.
Protein	18,27	18.51	n.s.
Lipid	12.00	11.85	n.s.
C18:1 n7,n9	21.62	22.77	**
C18:2 n6	11.26	20.16	**
C20:5 n3	8.62	6.25	**
C22:5 n3	3.63	2.92	**
C22:6 n3	14.18	12.60	**
SFA	23.40	25.80	**
MUFA	29.90	28.80	*
N-3 PUFA	29.5	25.1	**
N-6 PUFA	12.3	21.1	**

Sofi et al., 2008

[mean age: 48.6 ± 12.9 years (range: 23-67)]

Every subject was instructed to consume about 650 g/week of farmed sea bram (4 times per week), by maintaining a regular eating pattern

Dyslipidemia was defined as:

- Total cholesterol > 200 mg/dL
- LDL-cholesterol > 130 mg/dL
- Triglycerides > 150 mg/dL

Cooking guidelines:

Microwave or normal owen, with the addition of salt and olive oil

Sofi et al., 2008

Intake trial Sea bream fillet components mean intake in 10 WK trial (g) in dislipidemic subjects

		FLESH	LIPIDS	C20:5	C22:6	SFA	MUFA	n-3 PUFA	n-6 PUFA
FM ±		5885	700.2	45.5	74.5	136.5	158.2	155.6	65.0
	± SD	265	22.1	1.5	32.	4.6	5.4	5.3	2.2
PP		6906	801	41.3	83.2	155.0	191.4	166.2	139.8
	± SD	463	52	1.8	3.7	6.8	8.4	7.3	6.2

Mean EPA + DHA = 12 g/wk C18:2n-6 = FM 6 g/wk ; PP 13 g/wk; Mean n-3/n-6 = FM 2.4 ; PP 1.2;

Results: Total cholesterol

RESULTS: TRIGLYCERIDES

RESULTS: INTERLEUKIN-8

Results: whole blood viscosity

Researches on salmon, trout, seabass and seabream (RAFOA, Researching alternative to fish oil for aquaculture) indicated a good problem solution :

DHA and EPA levels were restored up to 90% after feeding trout, seabass and seabream by a finishing diet with fish oil for the last 14-24 weeks.

There is a "washing out" of fatty acid of vegetal oil and a "washing in" of the fish oil fatty acids restoring the most of the healthy EPA + DHA content in fish muscle

However the ability to "wash-in" DHA & EPA was more easily achieved than "wash out" of 18:2n-6 and 18:3n-3! It was aknowledged at European level that positive fish health effects generally outweights the potential negative effects (positive > negative) but the need to gradually change aquafeeds will also produce changes in fish healthy eating quality. Monitoring these changes will become important to do the right choices for safe and healty seafood for consumer

Thank you for your attention!!